Close Menu
    Trending
    • What comes next for AI copyright lawsuits?
    • Why PDF Extraction Still Feels LikeHack
    • GenAI Will Fuel People’s Jobs, Not Replace Them. Here’s Why
    • Millions of websites to get ‘game-changing’ AI bot blocker
    • I Worked Through Labor, My Wedding and Burnout — For What?
    • Cloudflare will now block AI bots from crawling its clients’ websites by default
    • 🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025
    • Futurwise: Unlock 25% Off Futurwise Today
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»機器學習複習系列-線性回歸 – Hsu Jerry – Medium
    Machine Learning

    機器學習複習系列-線性回歸 – Hsu Jerry – Medium

    Team_AIBS NewsBy Team_AIBS NewsApril 16, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    例子:

    數據(參數):如上圖表,數據為工資(X1)以及年齡(X2)

    目標(標籤):目標為額度(Y)

    我們要依據數據,預測目標,可以簡單把上面的圖表轉成下圖,紅色點代表X1和X2的數據,中間的平面表示我們要找到一個線性方程,能夠擬合所有數據點,並且使誤差最小

    用數學表達,假設θ1是年齡的參數,θ2是工資的參數,則這個平面的方程可以表示為

    θ0為偏置項,可以簡單理解為上圖平面的上下平移,為了更有效率表示多維特徵的加總,我們將所有參數與輸入包裝成向量:

    參數向量:

    輸入向量(注意這裡故意在最前面加上 1,以配合偏置項):

    將這兩個向量做點積(dot product),就會變成:

    對於每個數據點來說,可以表達為

    y(i) 表示真實值,即每個數據點i的y維度的值,也就是我們要預測的目標,為該數據經過擬合方程後得出預測值,再加上誤差值ε,對於單一數據點來說,理想狀態ε為0。

    但是這在現實世界中是不可能的,大部分的擬合方程得出的預測值不可能完全沒有誤差,但對於好的擬合方程來說,對於所有數據點的誤差值趨近於真實值。

    線性回歸使用最小二乘法(Least Squares Technique)來尋找最佳擬合線。其目標是最小化所有實際觀測值與預測值之間差的平方和,即最小化殘差平方和(Residual Sum of Squares, RSS)或稱為目標函數或是損失函數:

    機器學習中比較常用的方法是均方誤差(Imply Squared Error, MSE),即最小二乘法再除以樣本數m:

    y(i) 表示真實值,hθ(x(i))表示預測值,平方是為了消掉誤差的正負值避免正負值相加導致低估誤差

    向量化公式:

    其中:

    • X:包含所有輸入資料的矩陣,形狀是 m×n每列是 [1,x1,x2]
    • y:實際的輸出向量(額度)
    • θ:我們要求解的參數向量

    有目標函數J(θ)後,要如何求解?

    如果只有一個變數,則稱為簡單線性回歸,可以用正規方程來解,假設有資料集 {(x1,y1),(x2,y2),…,(xn,yn)},可以利用微積分來最小化MSE。對θ1 和 θ0 分別取偏導並令其為 0,得到封閉解(Closed-form answer):

    若資料集非常大或是多元線性回歸(多個變數),可以使用梯度下降法(Gradient Descent)來迭代逼近最小損失,目標函數如下(其實就是MSE,只是除以m改成除以2m,為了方便求導):

    分別對 θ0和 θ1求偏導數後,得到每次更新的公式如下更新規則如下:

    • α:學習率(studying price),表示每次更新的步長
    • m:訓練樣本數
    • x(i):第 i 筆輸入樣本
    • y(i):第 i 筆標籤(實際值)
    • hθ(x(i)):模型的預測值

    如果寫成通用形式,更新的公式如下:

    θ:模型參數向量(如 θ0,θ1)

    ∇θ​J(θ):對 θ的偏微分,也就是「梯度」

    梯度下降有三種形式,分別是批量梯度下降、隨機梯度下降、小批量梯度下降:



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleFuture Chips Will Be Hotter Than Ever
    Next Article When Predictors Collide: Mastering VIF in Multicollinear Regression
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025
    Machine Learning

    🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025

    July 1, 2025
    Machine Learning

    Reinforcement Learning in the Age of Modern AI | by @pramodchandrayan | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    What comes next for AI copyright lawsuits?

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    Precision vs Recall vs F1 Score: Understanding the Right Metric for Your Model | by The Analyst’s Edge | Jun, 2025

    June 1, 2025

    The Salary Trends for Data Scientists Around the World | by Sanchitamishra | Mar, 2025

    March 13, 2025

    Seduced AI vs Candy AI

    January 10, 2025
    Our Picks

    What comes next for AI copyright lawsuits?

    July 1, 2025

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025

    GenAI Will Fuel People’s Jobs, Not Replace Them. Here’s Why

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.