Close Menu
    Trending
    • Tesla deliveries plummet 14% in second quarter
    • Why Entrepreneurs Are Swapping Beach Vacations for Longevity Retreats
    • Agentic AI with NVIDIA and DataRobot
    • AI Governance in South Africa: New Privacy Laws Every Tech Leader Must Know | by emmanuel.tshikhudo | Jul, 2025
    • fileAI Launches Public Platform Access, Data Collection for Workflow Automation
    • Before You Start Day Trading, Know These Stages
    • How generative AI could help make construction sites safer
    • PCA and SVD: The Dynamic Duo of Dimensionality Reduction | by Arushi Gupta | Jul, 2025
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Logarithmic Memory Networks (LMNs): Efficient Long-Range Sequence Modeling for Resource-Constrained Environments | by Ahmed Boin | Jan, 2025
    Machine Learning

    Logarithmic Memory Networks (LMNs): Efficient Long-Range Sequence Modeling for Resource-Constrained Environments | by Ahmed Boin | Jan, 2025

    Team_AIBS NewsBy Team_AIBS NewsJanuary 15, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    The Answer: Logarithmic Reminiscence Networks (LMNs)

    LMNs provide an environment friendly different by leveraging a hierarchical logarithmic tree construction to retailer and retrieve historic data dynamically. Right here’s what units LMNs aside:

    1. Logarithmic Complexity:

    In contrast to the O(n²) complexity of consideration mechanisms in Transformers, LMNs cut back this to O(log(n)), drastically enhancing computational effectivity.

    2. Dynamic Reminiscence Summarization:

    LMNs summarize historic context by means of a Reminiscence Block Building Employee (Summarizer) Layer, which operates in:

    • Parallel Mode (coaching): Effectively processes hierarchical tree buildings.
    • Sequential Mode (inference): Manages reminiscence like a extremely optimized system.

    3. Implicit Positional Encoding:

    LMNs encode positional data inherently, eliminating the necessity for specific positional encodings required by Transformers.

    Key Outcomes

    Reminiscence Utilization

    In comparison with Transformers, LMNs exhibit considerably decrease reminiscence necessities. For sequences of size n, the reminiscence footprint scales logarithmically with the sequence measurement, versus the quadratic development in Transformers.

    Inference Time

    LMNs obtain sooner inference instances on account of their environment friendly reminiscence retrieval mechanism. Benchmarks present a 50%-80% discount in inference time for sequences exceeding 1,000 tokens, extra discount with longer sequences.

    These outcomes exhibit LMNs’ functionality to ship real-time efficiency even in computationally constrained environments.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleWhy AI is a Game Changer for Crisis Management in HR
    Next Article PornX AI Review and Features
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    AI Governance in South Africa: New Privacy Laws Every Tech Leader Must Know | by emmanuel.tshikhudo | Jul, 2025

    July 2, 2025
    Machine Learning

    PCA and SVD: The Dynamic Duo of Dimensionality Reduction | by Arushi Gupta | Jul, 2025

    July 2, 2025
    Machine Learning

    Can AI Replace Doctors? How Technology Is Shaping Healthcare – Healthcare Info

    July 2, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Tesla deliveries plummet 14% in second quarter

    July 2, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    प्रीति ज़िंटा प्रीति ज़िंटा का इतिहास इस प्रकार है: प्रीति ज़िंटा का जन्म 31 जनवरी, 1975 को शिमला, हिमाचल प्रदेश में हुआ था. उनके पिता दुर्गानंद ज़िंटा भारतीय थलसेना में अफ़सर थे. प्रीति ने अपनी शुरुआती पढ़ाई शिमला के कॉन्वेंट ऑफ़ जीज़स एंड मेरी बोर्डिंग स्कूल से की. प्रीति ने अंग्रेज़ी ऑनर्स की डिग्री हासिल की और फिर मनोविज्ञान में स्नातक कार्यक्रम शुरू किया. उन्होंने आपराधिक मनोविज्ञान में स्नातकोत्तर की डिग्री हासिल की, लेकिन बाद में मॉडलिंग शुरू कर दी. प्रीति ने साल 1998 में शाहरुख़ खान के साथ आई फ़िल्म ‘दिल से’ से बॉलीवुड में डेब्यू किया. प्रीति ने कई हिट फ़िल्में दीं और बड़े-बड़े कलाकारों के साथ काम किया. प्रीति ने साल 2016 में अमेरिकी सिटिज़न जीन गुडइनफ़ से शादी की. प्रीति ने सरोगेसी के ज़रिए साल 2021 में जुड़वां बच्चों जय और जिया को जन्म दिया. प्रीति आईपीएल टीम पंजाब किंग्स की मालकिन हैं. | by Nimbaram Kalirana 3744 | Jan, 2025

    January 4, 2025

    Your Job Search Doesn’t Have to Be a Full-Time Job

    April 5, 2025

    Adapting to Real-Time Inference with Recommendation API | by Mert Gurkan | Insider Engineering | Jan, 2025

    January 20, 2025
    Our Picks

    Tesla deliveries plummet 14% in second quarter

    July 2, 2025

    Why Entrepreneurs Are Swapping Beach Vacations for Longevity Retreats

    July 2, 2025

    Agentic AI with NVIDIA and DataRobot

    July 2, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.