Close Menu
    Trending
    • Revisiting Benchmarking of Tabular Reinforcement Learning Methods
    • Is Your AI Whispering Secrets? How Scientists Are Teaching Chatbots to Forget Dangerous Tricks | by Andreas Maier | Jul, 2025
    • Qantas data breach to impact 6 million airline customers
    • He Went From $471K in Debt to Teaching Others How to Succeed
    • An Introduction to Remote Model Context Protocol Servers
    • Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025
    • AI Knowledge Bases vs. Traditional Support: Who Wins in 2025?
    • Why Your Finance Team Needs an AI Strategy, Now
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Artificial Intelligence»Detecting hallucination in RAG | Towards Data Science
    Artificial Intelligence

    Detecting hallucination in RAG | Towards Data Science

    Team_AIBS NewsBy Team_AIBS NewsJanuary 20, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    The best way to measure how a lot of your RAG’s output is right

    Towards Data Science

    Photograph by Johannes Plenio on Unsplash

    I lately began to favor Graph RAGs greater than vector store-backed ones.

    No offense to vector databases; they work fantastically usually. The caveat is that you simply want specific mentions within the textual content to retrieve the proper context.

    We’ve got workarounds for that, and I’ve lined a couple of in my earlier posts.

    As an illustration, ColBERT and Multi-representation are useful retrieval fashions we must always contemplate when constructing RAG apps.

    GraphRAGs endure much less from retrieval points (I didn’t say they don’t endure.) Each time the retrieval requires some reasoning, GraphRAG performs terribly.

    Offering related context solves a key drawback in LLM-based functions: hallucination. Nonetheless, it doesn’t eradicate hallucinations altogether.

    When you’ll be able to’t repair one thing, you measure it. And that’s the main target of this put up. In different phrases, how can we consider RAG apps?



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe second wave of AI coding is here
    Next Article Precisely Match 200,000+ Colors Instantly With This Tiny Tool for 40% Off
    Team_AIBS News
    • Website

    Related Posts

    Artificial Intelligence

    Revisiting Benchmarking of Tabular Reinforcement Learning Methods

    July 2, 2025
    Artificial Intelligence

    An Introduction to Remote Model Context Protocol Servers

    July 2, 2025
    Artificial Intelligence

    How to Access NASA’s Climate Data — And How It’s Powering the Fight Against Climate Change Pt. 1

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Revisiting Benchmarking of Tabular Reinforcement Learning Methods

    July 2, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    AI in Prostate Cancer Imaging: Current Trends

    March 12, 2025

    Your Job Search Doesn’t Have to Be a Full-Time Job

    April 5, 2025

    Mastering the Exponential Function in Keras: A Guide with Practical Examples | by Karthik Karunakaran, Ph.D. | Apr, 2025

    April 2, 2025
    Our Picks

    Revisiting Benchmarking of Tabular Reinforcement Learning Methods

    July 2, 2025

    Is Your AI Whispering Secrets? How Scientists Are Teaching Chatbots to Forget Dangerous Tricks | by Andreas Maier | Jul, 2025

    July 2, 2025

    Qantas data breach to impact 6 million airline customers

    July 2, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.