Close Menu
    Trending
    • Cuba’s Energy Crisis: A Systemic Breakdown
    • AI Startup TML From Ex-OpenAI Exec Mira Murati Pays $500,000
    • STOP Building Useless ML Projects – What Actually Works
    • Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025
    • The New Career Crisis: AI Is Breaking the Entry-Level Path for Gen Z
    • Musk’s X appoints ‘king of virality’ in bid to boost growth
    • Why Entrepreneurs Should Stop Obsessing Over Growth
    • Implementing IBCS rules in Power BI
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization | by Zubair | Apr, 2025
    Machine Learning

    Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization | by Zubair | Apr, 2025

    Team_AIBS NewsBy Team_AIBS NewsApril 10, 2025No Comments2 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Cover-and-Search is a coaching technique developed to reinforce weakly-supervised object and motion localization by encouraging convolutional neural networks to be taught extra complete visible representations. Proposed by Krishna Kumar Singh and Yong Jae Lee, this methodology addresses a typical downside in weakly-supervised studying: neural networks are inclined to focus solely on probably the most discriminative components of an object or motion, equivalent to an individual’s face or a single body in an motion video, whereas ignoring the much less outstanding however nonetheless informative areas. Cover-and-Search introduces a novel but easy strategy to mitigate this subject by randomly hiding patches of the enter throughout coaching, successfully forcing the community to hunt various cues for studying. This method improves localization efficiency whereas remaining environment friendly and straightforward to combine into current deep studying pipelines.

    Introduction
    Cover-and-Search is particularly designed to function in weakly-supervised settings, the place solely image-level or video-level class labels can be found for coaching, and fine-grained annotations equivalent to bounding containers or temporal labels are absent. The tactic was impressed by the necessity to make neural networks extra meticulous in how they attend to visible knowledge. In conventional coaching, a CNN rapidly learns to latch onto the obvious visible characteristic that correlates with a category label. Whereas this works effectively for classification, it results in poor localization for the reason that realized consideration maps typically spotlight solely a small a part of the item. Cover-and-Search addresses this by modifying the coaching knowledge slightly than the community itself. By hiding random patches of the enter picture or video body, it ensures that the mannequin should discover a number of areas to succeed at classification, thereby studying a extra distributed and full illustration of the item or motion.

    Structure and Mechanism
    The Cover-and-Search technique is easy to implement and doesn’t require any modification to the mannequin structure or loss operate. Throughout coaching, the enter picture or body is split right into a grid of patches. A set proportion of those patches are randomly chosen to be hidden. These hidden patches are changed with a impartial worth, usually the dataset’s imply pixel worth, in order that they don’t contribute any class-specific info. The mannequin is educated utilizing these partially obscured photos in the identical approach it…



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Future of Data Engineering and Data Pipelines in the AI Era
    Next Article How AI can help supercharge creativity
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025

    July 1, 2025
    Machine Learning

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025
    Machine Learning

    🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Cuba’s Energy Crisis: A Systemic Breakdown

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    JPMorgan Is Reportedly Laying Off Around 1,000 Workers

    February 13, 2025

    🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025

    July 1, 2025

    Nobel Prizes 2024: AI Breakthroughs Win Big | by Andrea Valenzuela | Dec, 2024

    December 11, 2024
    Our Picks

    Cuba’s Energy Crisis: A Systemic Breakdown

    July 1, 2025

    AI Startup TML From Ex-OpenAI Exec Mira Murati Pays $500,000

    July 1, 2025

    STOP Building Useless ML Projects – What Actually Works

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.