Close Menu
    Trending
    • Revisiting Benchmarking of Tabular Reinforcement Learning Methods
    • Is Your AI Whispering Secrets? How Scientists Are Teaching Chatbots to Forget Dangerous Tricks | by Andreas Maier | Jul, 2025
    • Qantas data breach to impact 6 million airline customers
    • He Went From $471K in Debt to Teaching Others How to Succeed
    • An Introduction to Remote Model Context Protocol Servers
    • Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025
    • AI Knowledge Bases vs. Traditional Support: Who Wins in 2025?
    • Why Your Finance Team Needs an AI Strategy, Now
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Kredi Riski Tahmini: German Credit Data ile Gerçek Dünya Makine Öğrenmesi Projesi | by Yasin Aslan | Jun, 2025
    Machine Learning

    Kredi Riski Tahmini: German Credit Data ile Gerçek Dünya Makine Öğrenmesi Projesi | by Yasin Aslan | Jun, 2025

    Team_AIBS NewsBy Team_AIBS NewsJune 21, 2025No Comments2 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Özellik Önemi ve Tahmine Etki Eden Faktörler

    Modelimizin karar verirken en çok hangi özelliklere dayandığını anlamak, hem modeli yorumlamak hem de iş dünyasında güvenilir kararlar almak açısından çok değerlidir.

    Açıklama ve Özellik Önem Grafiği

    Random Forest modelimizin en önemli özellikleri şunlardır:

    • Kredi Miktarı: Talep edilen kredi miktarının büyüklüğü threat üzerinde belirleyici bir etkendir. Yüksek kredi talepleri genellikle threat artırıcıdır.
    • Kredi Süresi: Uzun vadeli krediler ödeme güçlüğünü artırabilir ve riski yükseltir.
    • Tasarruf Hesabı Durumu: Yüksek tasarrufu olan bireylerin kredi riskleri daha düşüktür.
    • Vadesiz Hesap Durumu: Düzenli nakit akışını gösteren vadesiz hesap durumu mannequin için önemli bir gösterge.
    • Yaş: Çok genç ya da ileri yaşlar, kredi geri ödeme riskini etkileyebilir.
    • Konut Durumu ve Kredi Amacı: Finansal istikrar ve kredi kullanım amacı da modelin kararını etkiler.

    Bu özelliklerin sıralamasını ve önem derecesini modelin “characteristic significance” grafiğiyle web olarak görebiliyoruz.

    Ayrıca, mannequin tarafından yapılan threat tahminlerinde, başvuran kişinin kredi miktarı yüksekse veya tasarruf ve vadesiz hesap durumu düşükse, “Kötü Threat” olarak sınıflandırma olasılığı artmaktadır. Bu da finansal güvenlik ve ödeme kapasitesinin tahminde kritik olduğunu gösteriyor.

    Bu özelliklerin ağırlığına göre bir grafik oluşturarak modelin mantığını daha iyi görselleştirdim.

    Random Forest Önem Grafiği

    🖥️ Kullanıcı Dostu Arayüz — Streamlit ile Etkileşim

    Projede, kullanıcıların finansal bilgilerini girerek anında kredi riskini tahmin edebileceği bir Streamlit uygulaması geliştirdim.

    Arayüzde:

    • Girdi alanları ve açıklamaları
    • Girilen bilgilerin özetleri
    • Threat tahmini ve mannequin güven skorları
    • Modelin özellik önem sıralaması grafik olarak sunuldu.

    Bu sayede teknik bilgisi sınırlı kullanıcılar bile kolayca karar destek alabilir.

    Uygulama Ekran Görüntüleri

    🚀 Sonuç ve Gelecek Adımlar

    Bu proje sayesinde hem makine öğrenmesi alanındaki bilgimi pekiştirdim hem de veri bilimi süreçlerini uçtan uca uygulayarak gerçek dünya problemi üzerine çalıştım. Uyguladığım Random Forest modeli, diğer algoritmalara göre daha yüksek başarı sağladı ve kullanıcı dostu bir arayüzle tahmin süreci kolaylaştırıldı.

    🔮 Gelecekte neler eklenebilir ve neler yapılabilir?

    Veri setini daha geniş ve güncel finansal verilerle zenginleştirerek modeli geliştirmek

    Modeli gerçek kullanıcı testleri ile değerlendirmek

    Gelecek aşamalarda modeli daha fazla veri ile beslemek

    Alternatif modellerle ve algoritmalarla daha doğru ve derinlemesine kıyaslama yapmak ve mannequin doğruluğunu daha da artırmak

    Modeli API olarak sunarak kurumsal sistemlerle entegre edilebilir hale getirmek.

    🙏 Teşekkürler

    Bu öğrenme yolculuğunda desteklerini esirgemeyen değerli hocam Yasemin Arslan MSc., mentörlerimiz Nermin Babalık ve Hakan Çelik’e; ayrıca Acunmedya Akademi, AkademiQ.web, Gökhan Mutlay, Esra Cüfâdaroğlu’na teşekkürlerimi sunarım.🤝

    Projenin tüm detaylarını, kodlarını ve analizlerini aşağıdaki platformlardan takip edebilirsiniz:

    📬 Bana ulaşmak isterseniz:

    Ayrıca Streamlit uygulamasına canlı demo olarak ulaşabilirsiniz.

    Her türlü görüş, öneri ve katkınız benim için çok değerli. Medium veya LinkedIn üzerinden ulaşabilirsiniz. 🙌



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleGoogle, Apple, Meta Passwords Exposed in Massive Hack: Report
    Next Article How to Turn Bad Reviews Into Great News For Your Business
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Is Your AI Whispering Secrets? How Scientists Are Teaching Chatbots to Forget Dangerous Tricks | by Andreas Maier | Jul, 2025

    July 2, 2025
    Machine Learning

    Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025

    July 2, 2025
    Machine Learning

    From Training to Drift Monitoring: End-to-End Fraud Detection in Python | by Aakash Chavan Ravindranath, Ph.D | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Revisiting Benchmarking of Tabular Reinforcement Learning Methods

    July 2, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    HeraHaven alternatives

    April 13, 2025

    Xbox finally reveals handheld console after decade of speculation

    June 9, 2025

    This artist collaborates with AI and robots

    February 17, 2025
    Our Picks

    Revisiting Benchmarking of Tabular Reinforcement Learning Methods

    July 2, 2025

    Is Your AI Whispering Secrets? How Scientists Are Teaching Chatbots to Forget Dangerous Tricks | by Andreas Maier | Jul, 2025

    July 2, 2025

    Qantas data breach to impact 6 million airline customers

    July 2, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.