Close Menu
    Trending
    • AI Startup TML From Ex-OpenAI Exec Mira Murati Pays $500,000
    • STOP Building Useless ML Projects – What Actually Works
    • Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025
    • The New Career Crisis: AI Is Breaking the Entry-Level Path for Gen Z
    • Musk’s X appoints ‘king of virality’ in bid to boost growth
    • Why Entrepreneurs Should Stop Obsessing Over Growth
    • Implementing IBCS rules in Power BI
    • What comes next for AI copyright lawsuits?
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»AlphaEvolve: Google 讓工程師失業? – Johnny Chang
    Machine Learning

    AlphaEvolve: Google 讓工程師失業? – Johnny Chang

    Team_AIBS NewsBy Team_AIBS NewsMay 20, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Human defines What, AlphaEvolve figures out How

    AlphaEvolve的核心理念是由人類定義「要解決什麼問題」(What),而讓AI系統自行探索「如何解決」(How)。這種人機協作模式極大地擴展了我們解決複雜問題的能力,但同時也很大部分取代了人類的研究方法以及工程師的職能。
    人類輸入的關鍵元素

    • 初始程式[Current Solution]: 人類提供基本程式碼或解決方式骨架,標記需要優化的組件
    • 評估標準[Evaluation]: 定義如何自動衡量解決方案的質量
    • 背景知識[Background]: 與想優化的組件相關的背景知識

    AlphaEvolve探索的部分

    • 演算法優化:在定義的評估指標下尋找最佳程式碼實現
    • 創新解決方案:LLM發現全新方法,甚至可能超越人類專家的現有解決方案
    • 搜索策略:藉由Program Database的紀錄找出最佳LLM提供的方案
    • 多步驟推理:不斷的產生不同的解決方式作為Prompt來增進LLM的Result

    運作原理

    AlphaEvolve將人工定義的「問題是什麼」與AI確定的「如何解決」相結合。系統由四個主要組件組成:

    1. 提示採樣器:利用先前嘗試的解決方法和知識作為Prompt
    2. LLM集合:生成改進程式碼的Result
    3. 評估器:執行和評分程式碼
    4. 程式資料庫:存儲程式及其品質分數和反饋,作為Prompt提供下一次LLM生成

    系統通過分散式控制器循環執行,簡單的步驟如下:

    • 從資料庫抽樣已經有的程式和靈感來源
    • 構建新的Prompt
    • 使用LLM生成程式碼修改
    • 應用這些修改創建新程式
    • 評估修改後的程式
    • 將結果添加回資料庫

    AlphaEvolve的結果

    google-deepmind/alphaevolve_results

    Deepmind有將AlphaEvolve改進的演算法在github給大家做驗證

    後記

    筆者認為AlphaEvolve的創新之處在於它打破了人類設計算法時常有的思維限制。不受傳統「經驗法則」或「設計套路」的束縛,AlphaEvolve能夠探索更加開放的算法空間。工程師往往受到先前教育和經驗的影響而局限了思路,而LLM的隨機性則使AlphaEvolve能夠產出一些天馬行空的解決方案。雖然這些方案可能看似不合常規,但通過嚴格的評估機制,這些答案最終都會回歸到解決問題的本質目的。

    相較於傳統方法中人類需要經過大量評估才進行實作,LLM採取的是不斷試錯以找尋最優解的策略。也許這正是AI超越人類的關鍵所在:通過海量的計算和迭代,AI能夠更接近問題的最優解,而不受人類既有認知框架的限制。

    反省

    現階段我們真的需要工程師或研究員嗎?
    如果沒有這些基礎訓練人類還能定義一個好的”What” ?



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Shared Responsibility Model: What Startups Need to Know About Cloud Security in 2025
    Next Article The real impact of AI on your organization
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025

    July 1, 2025
    Machine Learning

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025
    Machine Learning

    🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    AI Startup TML From Ex-OpenAI Exec Mira Murati Pays $500,000

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    The Surveillance Tools That Could Power Trump’s Immigration Crackdown

    January 25, 2025

    Winning Over Your Team on New ML Tools | by aljagne | Feb, 2025

    February 27, 2025

    data sData Science with Generative Ai Online New Batch – Harik Visualpath

    May 17, 2025
    Our Picks

    AI Startup TML From Ex-OpenAI Exec Mira Murati Pays $500,000

    July 1, 2025

    STOP Building Useless ML Projects – What Actually Works

    July 1, 2025

    Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.