Close Menu
    Trending
    • Finding the right tool for the job: Visual Search for 1 Million+ Products | by Elliot Ford | Kingfisher-Technology | Jul, 2025
    • How Smart Entrepreneurs Turn Mid-Year Tax Reviews Into Long-Term Financial Wins
    • Become a Better Data Scientist with These Prompt Engineering Tips and Tricks
    • Meanwhile in Europe: How We Learned to Stop Worrying and Love the AI Angst | by Andreas Maier | Jul, 2025
    • Transform Complexity into Opportunity with Digital Engineering
    • OpenAI Is Fighting Back Against Meta Poaching AI Talent
    • Lessons Learned After 6.5 Years Of Machine Learning
    • Handling Big Git Repos in AI Development | by Rajarshi Karmakar | Jul, 2025
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Anomaly Detection (Shap). Explaining Anomaly Using Shap (Code… | by kaiku | May, 2025
    Machine Learning

    Anomaly Detection (Shap). Explaining Anomaly Using Shap (Code… | by kaiku | May, 2025

    Team_AIBS NewsBy Team_AIBS NewsMay 24, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Explaining Anomaly Utilizing Shap (Code Focus)

    # Obtain my code package deal
    # !pip set up git+https://github.com/Alyxx-The-Sniper/outlier_explainer.git@version-2
    # Put together any dataset
    from sklearn.datasets import load_breast_cancer
    import pandas as pd
    X = pd.DataFrame(load_breast_cancer().knowledge, columns=load_breast_cancer().feature_names)
    print(X.form)

    # output
    (569, 30)

    from outlier_explainer import OutlierExplainerShap
    explainer = OutlierExplainerShap(methodology='isolation_forest', contamination=0.001)

    explainer.match(X)
    outliers = explainer.detect_outliers()
    outliers

    # output
    array([461])

    The Isolation Forest algorithm, utilizing a contamination fee of 0.001, detected an anomaly at index [461]. Why is that this thought-about an anomaly? SHAP may help clarify the underlying purpose.

    # choose index from outliers
    # present prime 5 options that making this occasion an anomaly (prime 5 in under dataframe)
    explainer.explain_outlier(outliers[0], visualize=True, top_n=5)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleWhy Gamification Is the Secret Weapon for Modern Brand Engagement
    Next Article Get 8 Microsoft Office Apps For One Low Price
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Finding the right tool for the job: Visual Search for 1 Million+ Products | by Elliot Ford | Kingfisher-Technology | Jul, 2025

    July 1, 2025
    Machine Learning

    Meanwhile in Europe: How We Learned to Stop Worrying and Love the AI Angst | by Andreas Maier | Jul, 2025

    July 1, 2025
    Machine Learning

    Handling Big Git Repos in AI Development | by Rajarshi Karmakar | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Finding the right tool for the job: Visual Search for 1 Million+ Products | by Elliot Ford | Kingfisher-Technology | Jul, 2025

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    What the ‘Big, Beautiful Bill’ Means for Franchise Owners — And Workers

    June 29, 2025

    Meta to End Fact-Checking Program in Shift Ahead of Trump Term

    January 7, 2025

    Jeff Bezos’ Successful Blue Origin Launch Silences Skeptics

    January 19, 2025
    Our Picks

    Finding the right tool for the job: Visual Search for 1 Million+ Products | by Elliot Ford | Kingfisher-Technology | Jul, 2025

    July 1, 2025

    How Smart Entrepreneurs Turn Mid-Year Tax Reviews Into Long-Term Financial Wins

    July 1, 2025

    Become a Better Data Scientist with These Prompt Engineering Tips and Tricks

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.