Close Menu
    Trending
    • Boost Team Productivity and Security With Windows 11 Pro, Now $15 for Life
    • 10 Common SQL Patterns That Show Up in FAANG Interviews | by Rohan Dutt | Aug, 2025
    • This Mac and Microsoft Bundle Pays for Itself in Productivity
    • Candy AI NSFW AI Video Generator: My Unfiltered Thoughts
    • Anaconda : l’outil indispensable pour apprendre la data science sereinement | by Wisdom Koudama | Aug, 2025
    • Automating Visual Content: How to Make Image Creation Effortless with APIs
    • A Founder’s Guide to Building a Real AI Strategy
    • Starting Your First AI Stock Trading Bot
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Building Linear Regression from Scratch: Forecasting YouTube Ad Revenue | by Hari Patel | Mar, 2025
    Machine Learning

    Building Linear Regression from Scratch: Forecasting YouTube Ad Revenue | by Hari Patel | Mar, 2025

    Team_AIBS NewsBy Team_AIBS NewsMarch 8, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    from sklearn.metrics import mean_squared_error, r2_score

    class LinearRegressionScratch:
    def __init__(self, learning_rate=0.01, epochs=1000):
    self.learning_rate = learning_rate
    self.epochs = epochs
    self.weights = None
    self.bias = None

    def predict(self, X):
    “””Compute predictions utilizing linear regression speculation perform.”””
    return np.dot(X, self.weights) + self.bias

    def compute_loss(self, y_true, y_pred):
    “””Compute Imply Squared Error (MSE) loss.”””
    return np.imply((y_true – y_pred) ** 2)

    def gradient_descent(self, X, y_true, y_pred):
    “””Carry out one step of gradient descent replace.”””
    n = X.form[0]

    # Compute gradients
    dw = (-2/n) * np.dot(X.T, (y_true – y_pred))
    db = (-2/n) * np.sum(y_true – y_pred)

    # Replace weights and bias
    self.weights -= self.learning_rate * dw
    self.bias -= self.learning_rate * db

    def match(self, X, y):
    “””Prepare the mannequin utilizing Gradient Descent.”””
    n_samples, n_features = X.form
    self.weights = np.zeros(n_features) # Initialize weights
    self.bias = np.zeros(1) # Initialize bias explicitly

    # Retailer loss for visualization
    self.loss_history = []

    for i in vary(self.epochs):
    y_pred = self.predict(X)
    loss = self.compute_loss(y, y_pred)
    self.gradient_descent(X, y, y_pred)

    # Retailer loss & print often
    self.loss_history.append(loss)
    if i % 100 == 0:
    print(f”Epoch {i}: Loss = {loss:.4f}”)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous Article5 Use Cases for Scalable Real-Time Data Pipelines
    Next Article When You Just Can’t Decide on a Single Action
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    10 Common SQL Patterns That Show Up in FAANG Interviews | by Rohan Dutt | Aug, 2025

    August 2, 2025
    Machine Learning

    Anaconda : l’outil indispensable pour apprendre la data science sereinement | by Wisdom Koudama | Aug, 2025

    August 2, 2025
    Machine Learning

    Peering into the Heart of AI. Artificial intelligence (AI) is no… | by Artificial Intelligence Details | Aug, 2025

    August 2, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Boost Team Productivity and Security With Windows 11 Pro, Now $15 for Life

    August 2, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    Celsius Energy Drink May Contain Alcohol in Labeling Mixup

    August 1, 2025

    Private data including criminal records stolen in Legal Aid hack

    May 19, 2025

    NASA’s VIPER Gave Up a Ride to the Moon. This Startup’s Rover Took It.

    February 5, 2025
    Our Picks

    Boost Team Productivity and Security With Windows 11 Pro, Now $15 for Life

    August 2, 2025

    10 Common SQL Patterns That Show Up in FAANG Interviews | by Rohan Dutt | Aug, 2025

    August 2, 2025

    This Mac and Microsoft Bundle Pays for Itself in Productivity

    August 2, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.