Close Menu
    Trending
    • Qantas data breach to impact 6 million airline customers
    • He Went From $471K in Debt to Teaching Others How to Succeed
    • An Introduction to Remote Model Context Protocol Servers
    • Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025
    • AI Knowledge Bases vs. Traditional Support: Who Wins in 2025?
    • Why Your Finance Team Needs an AI Strategy, Now
    • How to Access NASA’s Climate Data — And How It’s Powering the Fight Against Climate Change Pt. 1
    • From Training to Drift Monitoring: End-to-End Fraud Detection in Python | by Aakash Chavan Ravindranath, Ph.D | Jul, 2025
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Chapter 3. Lists. Introduction | by Mustafa Germec | May, 2025
    Machine Learning

    Chapter 3. Lists. Introduction | by Mustafa Germec | May, 2025

    Team_AIBS NewsBy Team_AIBS NewsMay 1, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Picture by AltumCode on Unsplash

    Lists in Python are versatile knowledge constructions that keep the order of components, which means that gadgets are saved in a particular sequence. They’ll include any kind of object, together with numbers, strings, and even different lists, permitting for nesting to any depth. This implies you possibly can have lists inside lists, creating complicated knowledge constructions. Parts inside a listing may be accessed utilizing their index positions, ranging from zero. Lists are mutable, so their contents may be modified after creation — gadgets may be added, eliminated, or modified. Moreover, lists are dynamic, which means their dimension can change as components are added or eliminated. This flexibility makes lists a robust and generally used device in Python programming.

    # Creating a listing with blended knowledge varieties: string, integer, and one other integer
    nlis = ['python', 25, 2022]
    # Show the listing
    print(nlis) # Output: ['python', 25, 2022]
    ==============================================================================
    Output:
    ['python', 25, 2022]
    # Show constructive and unfavorable indexing of every factor within the listing 'nlis'
    # Print constructive and unfavorable indexing of the primary factor
    print('Optimistic and unfavorable indexing of the primary factor: n - Optimistic index:', nlis[0], 'n - Damaging index:', nlis[-3])
    print()
    # Print constructive and unfavorable indexing of the second…



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleApple referred for possible criminal contempt investigation
    Next Article How Would I Learn to Code with ChatGPT if I Had to Start Again
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025

    July 2, 2025
    Machine Learning

    From Training to Drift Monitoring: End-to-End Fraud Detection in Python | by Aakash Chavan Ravindranath, Ph.D | Jul, 2025

    July 1, 2025
    Machine Learning

    Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Qantas data breach to impact 6 million airline customers

    July 2, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    Euclidean vs. Manhattan Distance in Machine Learning: | by Harsha Vardhan Mannem | May, 2025

    May 29, 2025

    Andreessen Horowitz Defends Hiring Daniel Penny

    February 6, 2025

    There’s No Need to Hire a Professional Photo Editor for Your Business When You Have Luminar Neo

    April 14, 2025
    Our Picks

    Qantas data breach to impact 6 million airline customers

    July 2, 2025

    He Went From $471K in Debt to Teaching Others How to Succeed

    July 2, 2025

    An Introduction to Remote Model Context Protocol Servers

    July 2, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.