Close Menu
    Trending
    • Musk’s X appoints ‘king of virality’ in bid to boost growth
    • Why Entrepreneurs Should Stop Obsessing Over Growth
    • Implementing IBCS rules in Power BI
    • What comes next for AI copyright lawsuits?
    • Why PDF Extraction Still Feels LikeHack
    • GenAI Will Fuel People’s Jobs, Not Replace Them. Here’s Why
    • Millions of websites to get ‘game-changing’ AI bot blocker
    • I Worked Through Labor, My Wedding and Burnout — For What?
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Dominando Dados Desbalanceados: Qual Técnica de Balanceamento Vence na Detecção de Fraudes? | by samuel | Apr, 2025
    Machine Learning

    Dominando Dados Desbalanceados: Qual Técnica de Balanceamento Vence na Detecção de Fraudes? | by samuel | Apr, 2025

    Team_AIBS NewsBy Team_AIBS NewsApril 15, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Visualização abstrata de um desbalanceamento de lessons

    Think about tentar encontrar uma agulha no palheiro. Esse é o desafio que os dados desbalanceados impõem aos modelos de Machine Studying. Em cenários como detecção de fraudes, diagnóstico de doenças raras ou previsão de falhas, a classe de interesse — os eventos que realmente importam — é uma minoria esmagadora. Sem o cuidado adequado, os modelos tendem a ignorar essa classe minoritária, entregando resultados decepcionantes justamente onde a precisão é mais crítica.

    Um exemplo clássico disso é o conjunto de dados Credit Card Fraud Detection, disponível no Kaggle. Nele, menos de 0,2% das transações são fraudulentas. Como construir um modelo que detecte essas agulhas no palheiro digital? Uma das estratégias mais populares é o balanceamento de dados. Mas com tantas opções — SMOTE, ADASYN, RandomOverSampler, RandomUnderSampler, Tomek Hyperlinks, ENN e métodos híbridos — , qual delas realmente faz a diferença?

    Para responder a essa pergunta, realizamos um experimento detalhado, comparando diversas técnicas de balanceamento e classificadores, usando o dataset de fraudes em cartões de crédito como campo de teste. Vamos compartilhar os resultados e as lições aprendidas para que você possa aplicá-las nos seus próprios projetos.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleNVIDIA to Manufacture AI Supercomputers in U.S.
    Next Article Jack Dorsey Calls for End to Intellectual Property Law
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025
    Machine Learning

    🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025

    July 1, 2025
    Machine Learning

    Reinforcement Learning in the Age of Modern AI | by @pramodchandrayan | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Musk’s X appoints ‘king of virality’ in bid to boost growth

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    She worked on ‘Sesame Street’ and ‘Ms. Rachel.’ Here’s her best screen-time advice for kids

    April 6, 2025

    A Data Scientist’s Guide to Docker Containers

    April 8, 2025

    Telco Churn Prediction : Manual vs AWS SageMaker Autopilot | by saki | Jun, 2025

    June 16, 2025
    Our Picks

    Musk’s X appoints ‘king of virality’ in bid to boost growth

    July 1, 2025

    Why Entrepreneurs Should Stop Obsessing Over Growth

    July 1, 2025

    Implementing IBCS rules in Power BI

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.