Close Menu
    Trending
    • Implementing IBCS rules in Power BI
    • What comes next for AI copyright lawsuits?
    • Why PDF Extraction Still Feels LikeHack
    • GenAI Will Fuel People’s Jobs, Not Replace Them. Here’s Why
    • Millions of websites to get ‘game-changing’ AI bot blocker
    • I Worked Through Labor, My Wedding and Burnout — For What?
    • Cloudflare will now block AI bots from crawling its clients’ websites by default
    • 🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Kelly Criterion vs. Mean-Variance Optimization: A Practical Portfolio Allocation Study | by Farid Soroush, Ph.D. | May, 2025
    Machine Learning

    Kelly Criterion vs. Mean-Variance Optimization: A Practical Portfolio Allocation Study | by Farid Soroush, Ph.D. | May, 2025

    Team_AIBS NewsBy Team_AIBS NewsMay 8, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Three property have been chosen as representatives of diversified exposures:

    • SPY (S&P 500 ETF)
    • QQQ (Nasdaq 100 ETF)
    • AAPL (Apple Inc.)

    Day by day adjusted shut costs have been collected, and log-returns have been computed. The next strategies have been carried out:

    1. Kelly Criterion:

    Allocates weights based mostly on the inverse covariance matrix of log returns and their anticipated imply:

    This method maximizes geometric development however doesn’t account for short-term volatility.

    2. Fractional Kelly:

    To mitigate the volatility and overfitting threat of full Kelly, we simulate a 50% scaled model — a typical follow in hedge fund threat administration.

    3. Imply-Variance Optimization:

    Traditional Markowitz framework, fixing for the portfolio that maximizes the Sharpe ratio below long-only constraints.

    4. Equal Weight:

    A naive however strong benchmark, allocating equally throughout all property.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleFueling Autonomous AI Agents with the Data to Think and Act
    Next Article The Shadow Side of AutoML: When No-Code Tools Hurt More Than Help
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025
    Machine Learning

    🚗 Predicting Car Purchase Amounts with Neural Networks in Keras (with Code & Dataset) | by Smruti Ranjan Nayak | Jul, 2025

    July 1, 2025
    Machine Learning

    Reinforcement Learning in the Age of Modern AI | by @pramodchandrayan | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Implementing IBCS rules in Power BI

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    SQLite in Production: Dreams Becoming Reality | by Ed Izaguirre | Dec, 2024

    December 12, 2024

    IBM’s Francesca Rossi on AI Ethics: Insights for Engineers

    April 27, 2025

    Myths vs. Data: Does an Apple a Day Keep the Doctor Away?

    February 6, 2025
    Our Picks

    Implementing IBCS rules in Power BI

    July 1, 2025

    What comes next for AI copyright lawsuits?

    July 1, 2025

    Why PDF Extraction Still Feels LikeHack

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.