Close Menu
    Trending
    • How Smart Entrepreneurs Turn Mid-Year Tax Reviews Into Long-Term Financial Wins
    • Become a Better Data Scientist with These Prompt Engineering Tips and Tricks
    • Meanwhile in Europe: How We Learned to Stop Worrying and Love the AI Angst | by Andreas Maier | Jul, 2025
    • Transform Complexity into Opportunity with Digital Engineering
    • OpenAI Is Fighting Back Against Meta Poaching AI Talent
    • Lessons Learned After 6.5 Years Of Machine Learning
    • Handling Big Git Repos in AI Development | by Rajarshi Karmakar | Jul, 2025
    • National Lab’s Machine Learning Project to Advance Seismic Monitoring Across Energy Industries
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Modelo de Classificação de Flores com Machine Learning | by Danilo Fogaça | Jun, 2025
    Machine Learning

    Modelo de Classificação de Flores com Machine Learning | by Danilo Fogaça | Jun, 2025

    Team_AIBS NewsBy Team_AIBS NewsJune 14, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Passos Realizados

    Pré-processamento dos dados

    • Normalização (MinMaxScaler) para ajustar a escala das options.
    • Divisão dos dados em treino e teste (train_test_split).

    Treinamento dos modelos

    • Testei Random Forest, SVM, KNN e XGBoost no Iris Dataset.
    • Ajustei hiperparâmetros (C, n_estimators, neighbors).

    Validação e análise de efficiency

    • Testei os modelos em um dataset sintético para avaliar generalização.
    • Apliquei validação cruzada para garantir estabilidade dos resultados.
    • Comparei tempo de execução para entender eficiência computacional.

    Resultados

    Acurácia no Iris Dataset:

    • Todos os modelos atingiram 100% de acurácia.

    Acurácia no dataset sintético:

    • Random Forest e XGBoost: 83%
    • SVM: 81%
    • KNN: 80%

    Tempo de execução:

    • SVM foi o mais rápido na previsão.
    • XGBoost e Random Forest foram mais lentos no treinamento.

    Conclusão

    Os testes confirmaram que Random Forest e XGBoost têm melhor generalização, enquanto SVM se destaca pela velocidade na previsão.

    A escolha do modelo preferrred depende do tipo de problema, tamanho do dataset e necessidade de eficiência computacional.

    Os testes confirmaram que Random Forest e XGBoost têm melhor generalização, enquanto SVM se destaca pela velocidade na previsão. A escolha do modelo preferrred depende do tipo de problema, tamanho do dataset e necessidade de eficiência computacional.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleStreamline Your Workflow With This $30 Microsoft Office Professional Plus 2019 License
    Next Article Can AI Truly Develop a Memory That Adapts Like Ours?
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Meanwhile in Europe: How We Learned to Stop Worrying and Love the AI Angst | by Andreas Maier | Jul, 2025

    July 1, 2025
    Machine Learning

    Handling Big Git Repos in AI Development | by Rajarshi Karmakar | Jul, 2025

    July 1, 2025
    Machine Learning

    A Technical Overview of the Attention Mechanism in Deep Learning | by Silva.f.francis | Jun, 2025

    June 30, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    How Smart Entrepreneurs Turn Mid-Year Tax Reviews Into Long-Term Financial Wins

    July 1, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    Tech firms face demands to stop illegal content going viral

    June 30, 2025

    Learning Causal Inference (Part 1) | by Jessen William | Mar, 2025

    March 22, 2025

    The Great Contribution of SoftBank: Transforming Industries with Vision and Capital | by HIYA CHATTERJEE | Feb, 2025

    February 19, 2025
    Our Picks

    How Smart Entrepreneurs Turn Mid-Year Tax Reviews Into Long-Term Financial Wins

    July 1, 2025

    Become a Better Data Scientist with These Prompt Engineering Tips and Tricks

    July 1, 2025

    Meanwhile in Europe: How We Learned to Stop Worrying and Love the AI Angst | by Andreas Maier | Jul, 2025

    July 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.