Close Menu
    Trending
    • Qantas data breach to impact 6 million airline customers
    • He Went From $471K in Debt to Teaching Others How to Succeed
    • An Introduction to Remote Model Context Protocol Servers
    • Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025
    • AI Knowledge Bases vs. Traditional Support: Who Wins in 2025?
    • Why Your Finance Team Needs an AI Strategy, Now
    • How to Access NASA’s Climate Data — And How It’s Powering the Fight Against Climate Change Pt. 1
    • From Training to Drift Monitoring: End-to-End Fraud Detection in Python | by Aakash Chavan Ravindranath, Ph.D | Jul, 2025
    AIBS News
    • Home
    • Artificial Intelligence
    • Machine Learning
    • AI Technology
    • Data Science
    • More
      • Technology
      • Business
    AIBS News
    Home»Machine Learning»Predicting Protein Toxicity Using AI 2: Overview | by Hyungyu Han | Jan, 2025
    Machine Learning

    Predicting Protein Toxicity Using AI 2: Overview | by Hyungyu Han | Jan, 2025

    Team_AIBS NewsBy Team_AIBS NewsJanuary 15, 2025No Comments1 Min Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    # Set batch dimension
    batch_size = 32

    # Load batch converter
    batch_converter = alphabet.get_batch_converter()

    # Open the HDF5 file
    with h5py.File(hdf5_file_path, “r+”) as hdf:
    sequences = [] # Retailer sequences for batching
    accessions = [] # Retailer protein IDs for batching

    for acc in hdf.keys():
    group = hdf[acc]

    # Skip already processed information
    if “options” in group:
    proceed

    # Load sequence
    sequence = group[“sequence”][()]
    sequence = sequence.decode(“utf-8”) if isinstance(sequence, bytes) else sequence
    sequences.append((acc, sequence))
    accessions.append(acc)

    # Course of when sufficient information accumulates for a batch
    if len(sequences) == batch_size:
    batch_labels, batch_strs, batch_tokens = batch_converter(sequences)
    batch_tokens = batch_tokens.to(gadget) # Transfer information to GPU

    with torch.no_grad():
    outcomes = mannequin(batch_tokens, repr_layers=[30])
    embeddings = outcomes[“representations”][30].imply(dim=1).cpu().numpy() # Transfer information GPU -> CPU

    # Save embeddings for every ID
    for accession, embedding in zip(accessions, embeddings):
    group = hdf[accession]
    group.create_dataset(“options”, information=embedding)

    # Print batch save completion
    print(f”Batch processed and saved for accessions: {‘, ‘.be part of(accessions)}”)

    # Reset batch
    sequences = []
    accessions = []

    # Course of remaining information
    if sequences:
    batch_labels, batch_strs, batch_tokens = batch_converter(sequences)
    batch_tokens = batch_tokens.to(gadget) # Transfer information to GPU

    with torch.no_grad():
    outcomes = mannequin(batch_tokens, repr_layers=[30])
    embeddings = outcomes[“representations”][30].imply(dim=1).cpu().numpy() # Transfer information GPU -> CPU

    for accession, embedding in zip(accessions, embeddings):
    group = hdf[accession]
    group.create_dataset(“options”, information=embedding)

    # Print remaining batch save completion
    print(f”Remaining batch processed and saved for accessions: {‘, ‘.be part of(accessions)}”)

    print(“All batches processed and saved.”)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe $100-Million Habit That Leads to Extraordinary Success
    Next Article Muah AI Alternatives
    Team_AIBS News
    • Website

    Related Posts

    Machine Learning

    Blazing-Fast ML Model Serving with FastAPI + Redis (Boost 10x Speed!) | by Sarayavalasaravikiran | AI Simplified in Plain English | Jul, 2025

    July 2, 2025
    Machine Learning

    From Training to Drift Monitoring: End-to-End Fraud Detection in Python | by Aakash Chavan Ravindranath, Ph.D | Jul, 2025

    July 1, 2025
    Machine Learning

    Credit Risk Scoring for BNPL Customers at Bati Bank | by Sumeya sirmula | Jul, 2025

    July 1, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Qantas data breach to impact 6 million airline customers

    July 2, 2025

    I Tried Buying a Car Through Amazon: Here Are the Pros, Cons

    December 10, 2024

    Amazon and eBay to pay ‘fair share’ for e-waste recycling

    December 10, 2024

    Artificial Intelligence Concerns & Predictions For 2025

    December 10, 2024

    Barbara Corcoran: Entrepreneurs Must ‘Embrace Change’

    December 10, 2024
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    Most Popular

    Trump’s Tariffs Are Already Reducing Car Imports and Idling Factories

    April 8, 2025

    Explore IEEE Board’s Impactful Leadership

    May 22, 2025

    The Hustle Behind the Hit Film ‘Novocaine’

    April 3, 2025
    Our Picks

    Qantas data breach to impact 6 million airline customers

    July 2, 2025

    He Went From $471K in Debt to Teaching Others How to Succeed

    July 2, 2025

    An Introduction to Remote Model Context Protocol Servers

    July 2, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Business
    • Data Science
    • Machine Learning
    • Technology
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2024 Aibsnews.comAll Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.