๐ฐ Snowflake Structure
Database Storage ๐ฆ
โ Micro-partitioning
โ Time Journey โณ
โ Fail-Protected ๐พ
Cloud Providers โ๏ธ
โ Scalability throughout AWS, Azure, and Google Cloud
โ Question Acceleration Providers โก
Question Processing ๐
โ Digital Warehouses (Customary, Snowpark Optimized, Multicluster)
โ Question Pruning ๐งน
๐ Connecting to Snowflake
Net-based UI ๐
โ Interactive interface for question execution and useful resource administration
Snowsql
โ Command-line interface for automation and administration
ODBC/JDBC
โ Combine with BI instruments like Tableau, Energy BI
Native Connectors
โ Python, Spark, and different SDK integrations
Third-Celebration Connectors ๐
โ Azure Knowledge Manufacturing unit (ADF), Informatica, Matillion
๐ฅ Organisation and Accounts
Creating Consumer Accounts ๐งโ๐ป
โ Position-based entry management (RBAC)
Managing Accounts ๐
โ Permissions and safety insurance policies
Consumer Administration ๐จโ๐ป
โ Onboarding and offboarding customers
Digital Warehouses ๐ข
โ Customary, Snowpark Optimized, and Multicluster choices
Monitoring Warehouse Hundreds ๐
โ Monitor useful resource utilization and efficiency
Utilizing Question Acceleration Providersโก
โ Optimize long-running queries
๐๏ธ Knowledge Sorts & Codecs
Knowledge Sorts ๐ข
โ String, Integer, Timestamp, Variant (for semi-structured knowledge), and many others..
File Codecs ๐
โ CSV, JSON, AVRO, ORC, PARQUET, XML
๐ Knowledge Lifecycle
Organizing Knowledge ๐
โ Use of tables, views, and different sources
Storing Knowledge ๐ฌ
โ Inside and exterior levels for staging and loading knowledge
Querying Knowledge ๐งโ๐ฌ
โ Question knowledge with minimal latency utilizing caching
Eradicating Knowledge ๐๏ธ
โ Knowledge retention insurance policies, Time Journey, and Fail-safe
๐ฆ Phases
Inside Stage ๐๏ธ
โ Consumer, Named, and Desk levels
Exterior Stage ๐
โ AWS S3, Azure Blob, GCP integration
๐ Knowledge Integration
API Integration ๐
โ REST APIs to attach with exterior functions
Catalog Integration ๐
โ Combine with knowledge cataloging programs
Exterior Entry Integration ๐
โ Safe knowledge entry to exterior events
Notification Integration ๐ฒ
โ Integration with SNS for error alerts
Storage Integration ๐๏ธ
โ AWS, Azure, GCP storage integration
๐ Tables & Views
Everlasting Tables ๐
โ For long-term storage
Momentary and Transient Tables ๐
โ Quick-lived knowledge storage
Exterior Tables ๐
โ Entry knowledge from exterior cloud storage
Iceberg Tables ๐ง
โ Superior desk format for large-scale analytics
Dynamic Tables ๐
โ Robotically updating tables for real-time analytics
Hybrid Tables ๐ค
โ Combines options of dynamic and exterior tables
๐ ๏ธ Knowledge Loading & Unloading
Loading Knowledge ๐ฅ
โ Net interface, bulk loading, and reworking knowledge throughout load
Unloading Knowledge ๐ค
โ Load knowledge into cloud storage like AWS S3, GCP, or Azure Blob
Snowpipe ๐
โ Steady knowledge ingestion for real-time loading
Error Notifications โ ๏ธ
โ Alerts through SNS or different integrations
Automated Knowledge Ingestion โณ
โ Auto-ingest options for close to real-time knowledge
๐ Streams & Duties
Kinds of Streams ๐งต
โ Customary, append-only, and alter knowledge seize (CDC) streams
Utilizing Streams for CDC ๐
โ Monitor knowledge modifications effectively
Duties โฑ๏ธ
โ Automate knowledge processing with scheduled duties
Serverless Duties ๐
โ No infrastructure administration wanted
Job Graphs ๐
โ Outline dependencies for advanced workflows
Parameterization & Dynamic SQL ๐ง
โ Use dynamic SQL for versatile activity configurations
๐ Zero Copy Cloning
Clone Objects utilizing Time Journey โณ
โ Clone knowledge at particular historic factors
Time Journey Parameters ๐ฐ๏ธ
โ Management the information retention interval for time journey
๐ค Knowledge Sharing
Overview of Knowledge Suppliers and Customers ๐ฅ
โ Securely share knowledge with exterior or inside customers
Safe Knowledge Sharing ๐
โ Share with out bodily shifting knowledge between accounts
โณ Knowledge Caching
End result Cache ๐
โ Cache question outcomes for sooner response instances
Native Disk Cache ๐พ
โ Cache knowledge on native disk for improved efficiency
Question End result Cache ๐๏ธ
โ Retailer latest question outcomes to attenuate repeated computation
Metadata Cache ๐
โ Cache metadata for faster schema discovery
๐ฐ๏ธ Snowflake Time Journey
Utilizing Time Journey โณ
โ Question historic variations of information throughout the retention window
Knowledge Retention Interval ๐
โ Management how lengthy historic knowledge is offered
Enabling and Disabling Time Journey โ๏ธ
โ Set time journey options for particular tables or databases
๐ก๏ธ Snowflake Fail Protected
Understanding Fail-Protected ๐
โ Further knowledge safety past Time Journey for vital knowledge restoration
๐ Micro-partitioning
Advantages of Micro-partitioning ๐งฉ
โ Automated clustering for sooner querying
Impacts of Micro-partitioning ๐
โ Reduces storage prices and accelerates queries
Question Pruning ๐งน
โ Snowflake robotically prunes irrelevant partitions for question effectivity
๐ง Saved Procedures
Overview of Saved Procedures ๐ฉ
โ Automate advanced operations and logic
Supported Languages ๐ฃ๏ธ
โ JavaScript, SQL, and extra
Create and Name Procedures ๐ ๏ธ
โ Outline reusable procedures for automation
๐งฉ Consumer Outlined Capabilities (UDFs)
Scalar and Tabular Capabilities ๐งฎ
โ Customized capabilities for advanced transformations
Create and Name Capabilities ๐๏ธ
โ Outline and execute customized logic
Granting Privileges for UDFs ๐
โ Safe entry to customized capabilities
๐ Editions & Licensing
Customary ๐ผ
โ Fundamental options for basic workloads
Enterprise ๐ข
โ Superior safety and efficiency options
Enterprise Important ๐
โ Mission-critical options with enhanced safety
VPS (Digital Non-public Snowflake) ๐ก๏ธ
โ Devoted infrastructure for the best safety and compliance wants
๐ Conclusion
Maximize Snowflakeโs Potential โก
โ Leverage Snowflakeโs options for scalable, safe, and environment friendly knowledge engineering options
โ Proceed to discover new options in Snowflakeโs evolving structure to remain forward within the knowledge area
This roadmap gives an in depth view of the core ideas of Snowflake with visible cues and a streamlined format to assist knowledge engineers navigate Snowflakeโs key capabilities and options in 2025.